This paper introduces new algorithms for analysis and optimization of infeed centerless grinding, based on high-level integration of grinding models into a web-based simulation. This holistic approach to simulation facilitates system-level simulation and solvers for several interlinked problems associated with the process mechanics. Emphasis is on structuring the model-based simulation as well as adapting and incorporating the underlying models into the algorithms.
Geometric lobing-, chatter- and spinning-related process stability, as well as a time domain continuity equation, are integrated into the simulation to analyze the main quality-related limitations of the process. Once the process stability is assured for the process set-up, optimization strategies and a new infeed cycle definition function are proposed to achieve a minimal or target cycle time. An example of experimental optimization is provided to compare a high-quality process with a target cycle time to an optimized high-productivity process – demonstrating a 70% reduction in cycle time.