APPLY FOR INFORMATIOIN

 
DIVULGATION ARTICLES

Our Scientific publications, thesis, methods for innovation and divulgation articles.

Cylindrical milling tools: Comparative real case study for process stability

Cylindrical milling tools: Comparative real case study for process stability

Critical comparison is presented related to the stability behaviour of milling processes performed by conventional, variable helix and serrated milling tools. The paper presents a general milling model linked to any non-proportionally damped dynamic system. Extended multi frequency solution and semidiscretization are implemented and used to calculate the stability of stationary milling. Measurements performed in industrial environment validate the general numerical algorithm that is able to predict the stability conditions of milling processes carried out by cylindrical cutters of optional geometry. Both the calculations and the measurements confirm that, for roughing operations, the highest stability gain can be achieved by serrated cutters. It is also demonstrated that variable helix milling tools can achieve better stability behaviour only if their geometry is optimized for the given cutting operation.

January 2014

CONTACT WITH US FOR MORE INFORMATION

(34)943 748 000

RELATED ARTICLES

Comparative analysis of spindle speed variation techniques in milling
MAY OF 2004

Optimization of hard material roughing by jeans of a stability model
APRIL OF 2005

Time and frequency domain models for chatter prediction in milling
NOVEMBER OF 2005

Evaluation Study on Detection Techniques for Bearing Incipient Faults
JANUARY OF 2005

Feasibility study on diagnostic methods for detection of bearing faults at an early stage
JULY OF 2005

Stability study of the milling process using an exponential force model in frequency domain
MARCH OF 2006

Chatter avoidance method for milling process based on sinusoidal spindle speed variation method: simulation and experimental results
SEPTEMBER OF 2007

Analysis of Stability of Structural Modes in Milling Processes
APRIL OF 2010

Stability of serrated milling cutters
JUNE OF 2010

Effect of mode interaction on stability of milling processes
MAY OF 2010

Machine availability increase
JANUARY OF 2010

Fixed Boundaries Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction.
OCTOBER OF 2011

General Milling Stability Model for Cylindrical Tools
JULY OF 2012

Self-tuning semi-active tuned-mass damper for machine tool chatter suppression
MARCH OF 2012

Ball bearing damage detection using traditional signal processing algorithms
APRIL OF 2013

Design of a bench hardware-in-the-loop system for the study of chatter in turning.
MAY OF 2013

Design of an active damper for the elimination of chatter in machine tools
NOVEMBER OF 2013

Mechatronic Spindle Head for Chatter Suppression in Heavy Duty Operations
JULY OF 2014

Chatter suppression in a high speed magnetic spindle by adding damping
FEBRUARY OF 2014

Optimal control laws for chatter suppression using inertial actuator in milling processes
NOVEMBER OF 2014

Real milling force based dynamic parameter extraction method
DECEMBER OF 2014

Limiting factors for the active suppression of structural chatter vibrations using machine’s drives
JULY OF 2015